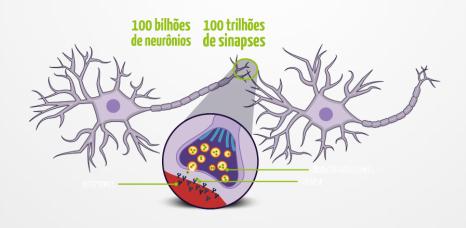
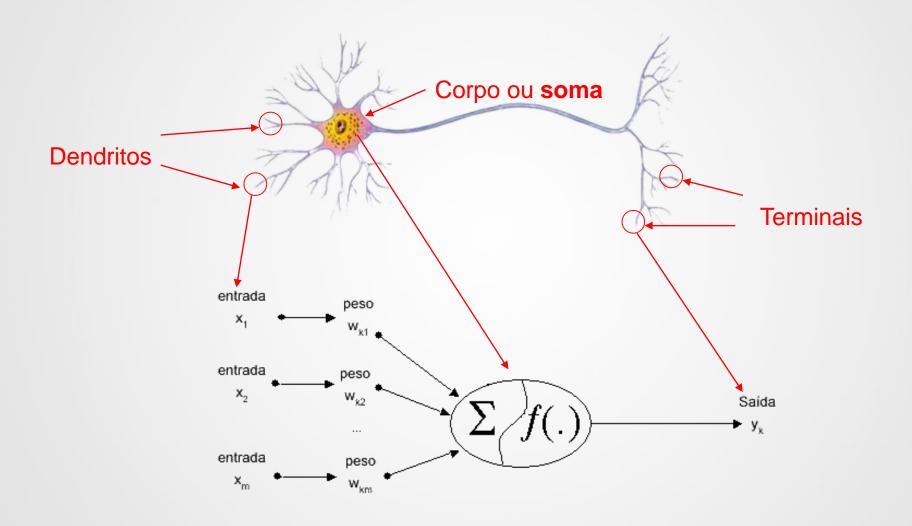


Redes Neurais Artificiais
Sistemas Inteligentes
Especialização em Automação Industrial

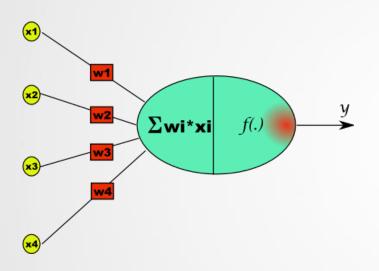

Redes Neurais - Definição

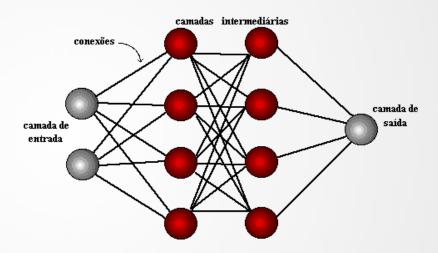
O que é Rede Neural ou Rede Neuronal Artificial (RNA)?

• É um modelo computacional que objetiva a agilização de processos por meio da aprendizagem e capacidade de adaptação.


Em que se baseia uma Rede Neural?

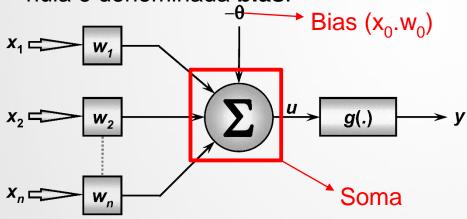
 Na estrutura de ligações de células do sistema nervoso humano, conhecimento no qual foi previamente examinado pelos neurocientistas.


Neurônio biológico Vs. Neurônio artificial



Redes Neurais - Camadas

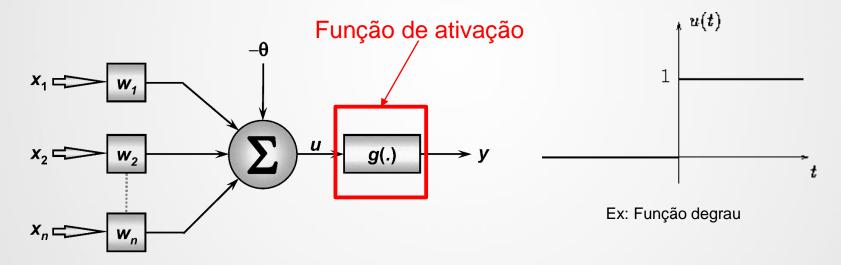
Uma camada


Mais de uma camada

Redes Neurais - Função de soma

Assim como o neurônio biológico, é realizada uma soma do produto entre os sinais de entrada e seus respectivos pesos. O neurônio humano também realiza uma "junção" dos sinais captados segundo a sua importância, por isso o seu corpo é chamado **soma**. Nesta soma é incluida uma entrada com peso próprio para evitar uma saída não nula e denominada **bias**.

$$u = \sum_{i=1}^{n} w_i x_i$$


Ou seja,

$$u = x_1.w_1 + x_2.w_2 + ... + x_n.w_n + x_0.w_0$$

Redes Neurais - Função de ativação

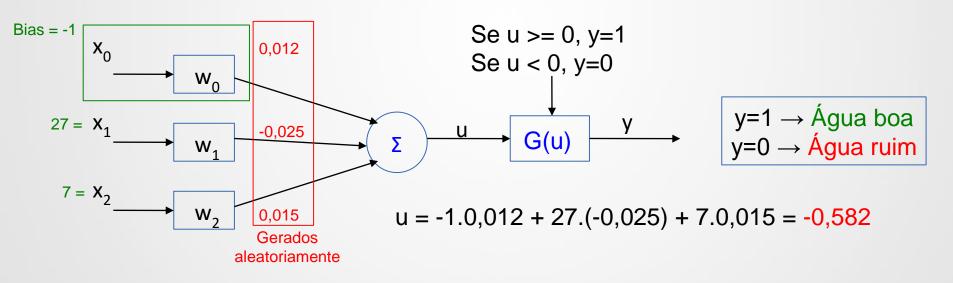
Após realizada a soma de todos os produtos entre sinais de entrada (x) e seus respectivos pesos (w), o resultado é aplicado a outra função que determina se o valor do somatório corresponde a uma classe pré definida. Essa função pode ser linear, sigmóide, salto ou uma rampa.

Redes Neurais - Treinamento

Pode ser de dois tipos:

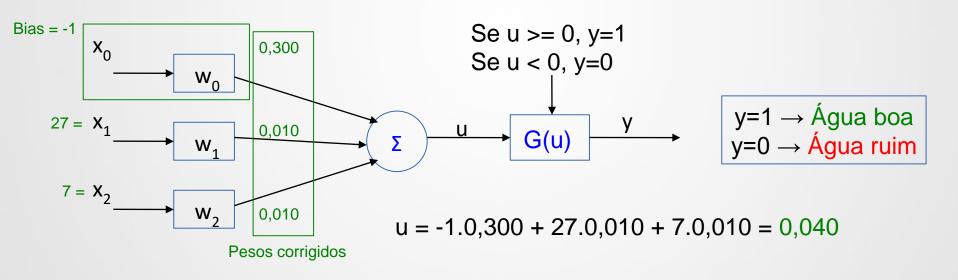
Supervisionado:

Aprendizado por correção de erro → Leva em consideração quanto deve ser ajustado dos pesos tomando por base a diferença entre o erro e o esperado.

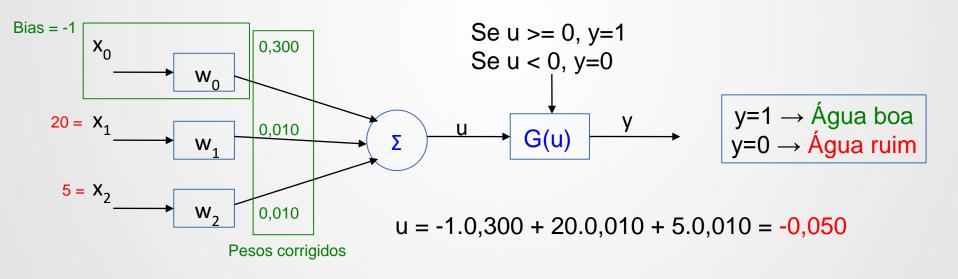

Não-supervisionado:

- → Aprendizado Hebbiano → As ligações entre neurônios podem ser fortalecidas ou enfraquecidas;
- → Aprendizado competitivo → Um dos neurônios é mais ativo que outros.

Deseja-se criar uma rede neural que indique a qualidade da água para criação de peixes Betta, obedecendo os seguintes parâmetros:


- Temperatura >= 24°C;
- pH >= 6,0.

Deseja-se criar uma rede neural que indique a qualidade da água para criação de peixes Betta, obedecendo os seguintes parâmetros:

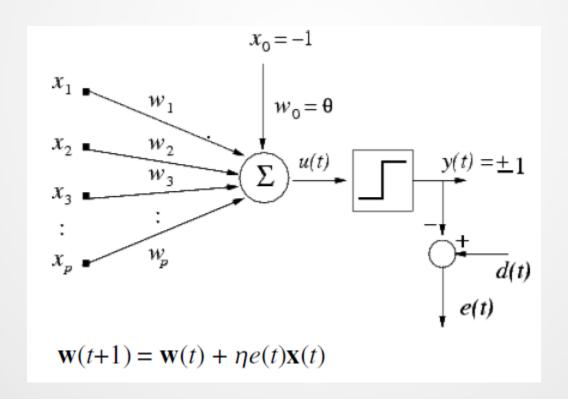

- Temperatura >= 24°C;
- pH >= 6,0.

Deseja-se criar uma rede neural que indique a qualidade da água para criação de peixes Betta, obedecendo os seguintes parâmetros:

- Temperatura >= 24°C;
- pH >= 6.0.

Estes conceitos possibilitam uma série de vantagens das redes neurais em relação aos computadores convencionais. São elas:

Computador	Neurocomputador
Executa uma série de ações pré programadas	Aprende de acordo com a necessidade
Realiza operações lógicas	Decide o que fazer
Depende de quem programa	Depende das regras estabelecidas
Analisa uma informação por vez	Analisa várias informações paralelamente


Redes Neurais (Adaline) - Definição

•O modelo Perceptron é o mais básico (também o primeiro) de redes neurais e é como inspiração para os demais. É o caso das redes ADALINE (Adaptive Linear Neuron ou Neurônio Linear Adaptivo), que surgiram 3 anos após, idealizado pelo professor Bernard Widrow e seu orientando Ted Hoff, em 1960 na universidade de Stanford.

Redes Neurais (Adaline) - Modelo

•Semelhante ao perceptron, redes adaline fazem o somatório dos produtos das entradas pelos seus respectivos pesos (incluindo o bias) e usa esse resultado em uma função de ativação. Porém, o reajuste dos pesos leva em consideração a quantidade de erro e aplica uma taxa de aprendizado.

Redes Neurais (Adaline) - Equação

•Como descrito na imagem do quadro anterior temos que:

$$w(t+1) = w(t) + \eta e(t).x(t), \text{ ou seja}$$

O novo peso é igual ao peso atual mais o produto da taxa de aprendizado η , pelo erro e e pelo o valor de entrada x.

• O erro e é a diferença entre o valor esperado de y e o valor obtido de y.

Redes Neurais (Adaline) - Equação

Analogamente:

$$w(t) = w(t-1) + \eta.e.x$$
, ou seja

O peso atual é igual ao peso anterior mais o produto da taxa de aprendizado η , pelo erro e e pelo o valor de entrada x.

•Deseja-se criar uma rede neural que faça a distinção entre laranjas e tangerinas. Como entrada, leva-se em consideração parâmetros como Fósforo (x1), Acidez (x2) e Cálcio (x3).

•O treinamento da rede se dará com as seguintes amostras:

X1 - Fósforo	X2 - Acidez	X3 - Cálcio	Classe
0,1	0,4	0,7	1 (Tangerina)
0,5	0,7	0,1	1 (Tangerina)
0,6	0,9	0,8	-1 (Laranja)
0,3	0,7	0,2	-1 (Laranja)

•O treinamento da rede se dará com as seguintes amostras:

x - Entradas	w - Pesos	x.w
-1	0,34	-0,34
0,1	-0,23	-0,023
0,4	0,94	0,376
0,7	-0,05	-0,035
		u = -0,022

•Como a resposta retornada pela rede foi a errada, então aplicamos o algoritmo para reajuste dos pesos:

$$w \leftarrow w + \eta(y - \hat{y})x$$

•Sendo w o peso, η a taxa de aprendizado, y o resultado esperado, $^{\circ}y$ o valor obtido e x o valor de entrada. Lembrando que $(y-^{\circ}y) = e$.

•Então para a primeira amostra:

$$w_0 \leftarrow 0.34 + 0.05.(1-[-1]).(-1) = 0.24;$$
 $w_1 \leftarrow -0.23 + 0.05.(1-[-1]).0.1 = -0.22;$
 $w_2 \leftarrow 0.94 + 0.05.(1-[-1]).0.4 = 0.98;$
 $w_3 \leftarrow -0.05 + 0.05.(1-[-1]).(0.7) = 0.02.$

•O treinamento da rede se dará com as seguintes amostras:

x - Entradas	w - Pesos	x.w
-1	0,24	-0,24
0,1	-0,22	-0,022
0,4	0,98	0,392
0,7	0,02	0,014
		u = 0,144

•O treinamento da rede se dará com as seguintes amostras:

x - Entradas	w - Pesos	x.w
-1	0,24	-0,24
0,5	-0,22	-0,11
0,7	0,98	0,686
0,1	0,02	0,001
		u = 0,338